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A theoretical t reatment  of electron transfer in and between molecules is 
presented.  The nuclei are assumed to move classically. A t ime-dependent  
electron probabili ty density is calculated using general equations given by 
Nikitin. Variational methods of different kinds may be employed in these 
equations. In the present  paper  some examples are studied at the extended 

2 - -  + Hiickel level for the systems H2-H~,  H2-O -H2 ,  H2-S2--H~ - and H2-H2-  
H~. 
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1. Introduction 

Electron transfer is a commonly  occurring phenomenon  of great interest in as 
diverse fields as atomic physics including astrophysics, semiconductor physics, 
organic and inorganic chemistry and biochemistry [1]. In condensed systems 
electron transfer is due to photoexcitations or thermal motions of the nuclei. In 
the theory of R. A. Marcus a rate constant is calculated assuming classical motion 
of the nuclei [2]. The barrier  for thermal excitation may be related to the optical 
excitation energy for corresponding light induced electron transfer (Fig. 1) [3]. 
In more  recent theoretical developments  the nuclear motions are treated quan- 
tum mechanically [4-7]. An interesting comparison between the quantum 
mechanical  and classical t reatment  of the nuclear problem was published recently 
[8, 9]. With a few notable exceptions [10-14] the medium between the electron 
exchanging centers has been considered without any regard to the electronic 
propert ies of the molecules it consists of. This problem is of great importance 
since the electronic structure of the medium decides whether the exchange 
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Fig. 1. Model for electron transfer in 
condensed systems [2, 3] 

reaction is adiabatic or approaches the nonadiabatic limit where no electron 
transfer takes place.  In the present paper this problem will be studied by 
quantum chemical methods. 

In quantum chemistry one usually deals with the calculation of the energies and 
wave functions of the ground state and a few excited states for one or a few 
nuclear geometries. It is easy to find examples of "avoided crossings" of energy 
surfaces. To study the flow of electron probability density at such crossings it is 
necessary to use a theory which allows for nonadiabatic transitions between the 
energy surfaces. Landau [15] and Zener  [16] have given an equation to calculate 
the probability for jump in the simplest possible case when two states with 
energies Hl l ( t )  and H22(t) interact and have the time independent interaction 
matrix element Hl2. The wave functions ul and u2 for each system when isolated, 
may be considered as orthogonal basis functions which leads to the secular 
problem: 

H i i - e  H12e --0" (1) 
HiE H22 - 

The time dependence in ul and u2 is ignored. For a given time the solution of 
Eq. (14) may be written as: 

E1 = H22 +Hi2  cot r/ 
(2) 

E 2 -  H i l - H i 2  cot ~/ 
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where 

2H12 
tg 2,7 (3) 

H l l  --/-/22 

(using the branch rr/2 < 2 , / <  0 when/-/22 > Hl l  and rr < 2 , / <  rr/2 when H l l  > 
/-/22)- The corresponding wave functions are: 

01 = cos r /u l  +sin r/u2 (4) 

02 = sin ~ / u l - c o s  ~/u2. 

The smallest energy difference is obtained for r /=  rr/4: 

HII  =H22; E2-E1 = -2/-/12. (5) 

Zener  obtained the time dependent  solution of Eq. (2) (under certain conditions) 
[6], whereas Landau treated the problem by perturbation theory [15]. The 
probability for jump from the lower surface to the upper one is: 

P=exp[-2,n'(2H12)2/-~7(gll-H22)]. (6) 

From Eq. (6) follows that the probability for jump tends to unity as H,2 tends 
to zero (nonadiabatic behaviour). 

Although the Landau-Zener  relation has proven to be very useful there are a 
number of objections to general applications of it. In a variational calculation 
it may not be possible to write the secular problem even approximately as in 
Eq. (1) with a well-defined matrix element H12. If, alternatively,/ /12 is defined 
as half the gap between the energy surfaces, it may not be possible to define 
/-/11 and/-/22 strictly. In applications of Eq. (6) Hal and / /22  are obtained as 
asymptotes of the energy surfaces. This may be possible in a collision between 
two particles which are at infinite separation at t = - o 0  and t = co, but less 
appropriate in condensed systems where the nuclei are confined to a certain 
region and where the energy surfaces may cross repeatedly along the nuclear 

Energy 

Q 
Fig. 2. Crossing energy surfaces illustrating the difficulties in the Landau-Zener model 
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trajectory (Fig. 2). Some crossings may involve more than two states. Finally 
the physical siutation may require more than two stationary states to form a 
"prepared state", i.e. to describe a known charge distribution at a given time. 
It is thus necessary to extend the theory beyond the Landau-Zener  approach. 

In this paper a time dependent  approach of Nikitin [17] will be developed to 
obtain a time dependent  electron probability density. Only wave functions and 
energies need to be calculated in a number of points along a classical nuclear 
trajectory. In each point the Born-Oppenheimer  approximation is assumed. The 
approach is therefore well suited for any quantum chemical calculational method. 

The ultimate purpose with the method to be presented here is to get a better 
understanding of electron transfer in large systems where a nonadiabatic 
behaviour may be important, as for instance the cytochromes of the respiratory 
chain. To that end it seems more important to get a qualitative understanding 
of electron transfer systems by simple quantum chemical methods than to obtain 
detailed data for a small system by advanced methods. In this paper the extended 
Hiickel method [18] will be used. Detailed applications with more sophisticated 
methods will be postponed to a later stage. 

2. Time Independent Hamiltonian 

Let us first study the time dependence of the electronic density in the case of a 
time independent hamiltonian, i.e. in the limit when the velocities of the nuclei 
tend to zero. We assume that a single molecule or a well defined part of a 
macromolecule at time t = 0 is described by a wave function 0(1, 2 . . . .  , N ;  0). 

'O may be expanded in terms of eigenfunctions of the Hamiltonian H of the 
system: 

0(1, 2 . . . . .  N ;  0) = ~ al~bl(1, 2 , . . . ,  N)  (7) 
l 

where 

H&t = Ed~l I (8) 

and 

at = (&tl0). (9) 

Assuming that H is time independent the time evolution is given by: 

0 = E a d ,  t exp ( - iEt t ) .  (10) 
z 

Atomic units are used throughout: Ea = 4.36 x 10 -is J; t~ = h E 2  ~ = 2.419 x 
10-17see. The wave function 0 satisfies the time dependent  Schr6dinger 

1 Since variationally calculated eigenfunctions and eigenvalues do not strictly satisfy Eq. (8) we 
may have to redefine H as an approximate "variational" operator H ' =  Z Etld~t)(cbtl which satifies 
Eq. (8). 
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equation: 

i 0_0~ = H$ = ~ alEt~bt exp (-iElt). (11) 
Ot t 

Introducing the spin independent transition densities 

pk,(rl) = N f ~bk(1, 2 . . . . .  N)4~l(1, 2 . . . . .  N) dsl d2 . . . dN (12) 

the electronic density of the system, normalized to N electrons, will be: 

p(r, t ) = N f  0~* dsl d 2 . . .  dN 

= • aka*pkl exp [--i(Ek -Et)t]. (13) 
k,l 

In the usual case {ai} and {&k} are real quantities and Eq. (13) may then be written: 

p(r, t)= p(r, O)-4 ~ aka,pk, sin2 ( ~ -  t) (14) 
k < l  

Of course, if ~0 happens to be an eigenfunction of H, i.e. only one ak in Eq. (7) 
is different from zero, the density will be independent of time. 

As an example we may choose H~-. The two Is functions are denoted d~A and 
4~B. We assume that the electron occupies ~bA at time t = 0. Eq. (7) corresponds 
to: 

(15) 
6A----42 \ ,/2 ] 42 \ 4~ ] 

and Eq. (14) to: 

p(r, t) = ~b~ ( r ) -  [~b~(r)- ~b2n(r)] sina ( ~  - ~  t). (16) 

The electron will oscillate between A and B with the frequency u = (E2 -E1)/2cr. 
At large distance R, the frequency rapidly tends to zero since [19] 

2 - r  

At  10 ~ ,  u = 109 sec-1; at 20 A, v = 13 sec -1, for example. 

Multiplying Eq. (11) by the complex conjugate of 0 [Eq. (10)] and integrating 
we obtain an equation for the energy of the system: 

E = (0]H]O) = Z latl2Et ~'Eo. (18) 
I 

E - E 0  is the energy required to prepare the system in the state 0. Hence 
localization of an electron to a certain atom or molecular group requires energy. 
In biological electron transfers a "chemical mechanism" whereby the electrons 
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travel from one group to the other, is sometimes discussed. This model has 
definite limitations since the energy for localization often turns out to be large. 
Below we will discuss molecular "bridges" as mediators of electrons. The bridges 
are different in this respect since the transferring electron has a small probability 
at all times to be found on the bridge. 

In atom-ion scattering the charges are localized at time t - - - o o .  The case of 
H + H § is rather special since the two sub-systems are identical and therefore 
resonate when brought together. It is perhaps instructive to study the case of 
different systems, still with no energy surface crossing. To localize one electron 
on A, Eq. (4) requires al  = cos r / and  a2 = sin 7. Inserting in Eq. (14) we obtain: 

2/E1 - E2 t) O (r, t) = PA -- 4 COS 7/ sin ~/ [cos ~/ sin ~OA -- COS ~7 sin ~TPB ] sin ~ - - - - ~  

=pA[1-sin22~Tsin2(~-t)]+pBsin22~lsin2(Elm2E~ O. (19) 

Since E1-E2 and H I ~ - / / 2 2  are large the oscillations will be rapid. ~/ is small 
and hence the probability on pB will be - 2  sin 2 ~ which is twice as large as the 
value in the ground state, but still very small. From Eq. (4) follows that/- /22-H1~ 
has to be of the order H12 in order to obtain a charge exchange of any magnitude. 
The system thus has to be brought to, or close to, the avoided crossing region 
of two or more energy surfaces. The magnitude of H12 is critical in two respects. 
It determines the size of the region where electron exchange is possible and at 
the same time the frequency of the charge oscillations. This "explains" the square 
dependence of HlZ in the Landau-Zener  equation. The limit of small /-/12 will 
be further studied in the next section. 

3. Time Dependent Nuclear Motion 

We will follow the semi-classical approach of Nikitin where the nuclei are 
assumed to follow a classical trajectory R (t) [17]. The electronic wave functions, 
{4~1}, are calculated in a sufficiently dense grid along this trajectory. Eqs. (8) and 
(9) are satisfied but {q~l} and a~ are now time dependent.  Instead of Eq. (10) we 
will write, following Nikitin: 

t 

0 = ~  al(t)~bl(ll . . . . .  N; t)exp [-i fo Eld'r]. (20) 

We have: 
t 

HO=Y'azEld~zexp[-ilol Eldr]. (21) 

Multiplying Eq. (21) by the complex conjugate of ~ and integrating, Eq. (18) 
is again obtained. Inserting Eq. (20) in 

i 04, = HgJ, (22) 
Ot 
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multiplying with the complex conjugate of ~bt and integrating one obtains the 
following system of equations: 

~=~mam( q~l O(bm~exp[-ilot(Em-Et) d~'] / (23) 

If we define a velocity v along the trajectory: 

I 0o 
v =  ~ -  = 0 t  (24) 

we arrive at the equation system 

dodal=~am( &~ ~O l&m) exp[-ilo~ -] (25) 

(O and O'  are coordinates along the trajectory). The matrix elements of o/oO 
are obtained by calculating ~bm in two close points, i and ], and use: 

0 1 
(26) 

The calculation of the matrix elements of O/OQ is the time consuming part at 
least in the case of accurate wave functions of configuration interaction type. 
Interpolation functions may be used to describe the Q-variation of the matrix 
elements (cDllO/OQ[cbm) [20]. 

After {dal/dt} have been obtained at t = to either directly from Eq. (23) or via 
Eq. (25) using 

dal dal dQ 
dt dQ dt (27) 

a new at for t = tl is obtained as 

+(da,~ 
alq) = alt~ \-~-/ to At. (28) 

Subsequently the electronic density a t  t = tl is obtained as in Eq. (13) using 
the integral form in the exponential as in Eq. (20). 

Non-zero matrix elements of O/Ot lead to non-adiabatic behaviour of various 
degrees. Using the wave function given in Eq. (4) and neglecting the weak 
t ime-dependence of the basis functions we obtain: 

( 1 0 1 / . , . . (  01) 0,0  r ~ r at dy r ~ r = - 0 t . 0 y  

where 

y = H l l  -H22. (29) 
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Since 

0r/ - H 1 2  
0y - (2H12) 2 + y2 

the matrix elements may be written as: 

0 It~ ) d ( H ~ e - H 2 2 ) / d t  1 
= (3O) 

4H12 I \ ~ ] 

Comparison with the Landau-Zener  equation, Eq. (6), shows that the matrix 
elements of O/Ot very appropriately may be called non-adiabatic coupling terms 
[17]. The width of the coupling region is HI~ - / / 2 2  = 2H12. 

When lI-I~-I-I221 >>/-/~2 the off-diagonal matrix elements of O/Ot are close to 
zero and the electron transfer almost adiabatic. The oscillations may be rapid 
but the amplitudes and the frequencies of the oscillations are slowly varying [cf. 
Eq. (19)]�9 In practical terms this means that a sparse integration mesh can be 
used. For small velocities the wave length of the oscillations may be smaller 
than the mesh which does not lead to any serious consequences. The adiabatic 
density fluctuations cannot and need not be followed in detail. They will be 
correct in some average sense�9 

4. Formal Aspects Normalization 

Using finite differences Eq. (3) may be written in the form: 

a (tl) = a (to) + d a  (to) 

f �9 t 1 exp (t ~o E1 dt) 
= 0 

exp ( - i  ft~ E1 dt) Jto 
x 0 

exp (i It tl E2 dt) !6(2t~176 (tl)) 

ii:) a (to) = S ~  ( 1 - to)S~ ( h ,  to)$~ (h  - to)a (to). 

Continuing in the interval (t2, tl) and using 

S~( t2-  to)S~(h - to) = SE(t2-  h) 

we obtain: 

a (t2) = S ~ ( t 2 -  to)S, (t2, h)SE ( t2 -  tl)S6 (h, to)SE (h -- to)a (to) 

and for any time t, > to. 

a(tn) = S~(tn - to)S6 (tn, tn-1) . . . SE(tl - to)a(to) 

= S~(tn - to) U(tn, to)a (to). 

�9 . :) 

(31) 

(32) 

(33) 

(34) 
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The operator  U fulfills the relation: 

U(t, to) = U(t, t') U(t ' ,  to); t > t' > to. (35) 

Eq. (34) may also be expressed as: 

O(t) = U(t,  to)O(to) (36) 

where ~p now is the coefficient matrix for the wave function 4s in the basis {~bl}. 
Provided that the operator  U preserves normalization it is hence an evolution 
operator  in the sense of L6wdin [21]. That 0 remains normalized follows from: 

U+(t+dt,  t ) U ( t + d t ,  t ) = S ~ ( d t ) S ~ ( t + d t ,  t )S~( t+dt ,  t ) S z ( d t ) - - 1  (37) 

where we have used 

S;S~b ~' /'&(t) l"~(t+dt)\*/-t(t+dt)l-t(t)\ 
= ~ \ , r  j,+,: / \q"i tq*k / = & k  (38) 

i 

and 

$~Sz  = 1. (39) 

Eq. (38) holds provided {~bi} forms a complete set at time t +dt.  

In practical calculations it is impossible in general to make the set {~bj} complete. 
It is usually rather easy to select the important configurations, however. If an 
important configuration is omitted by mistake, this will show up in a decrease 
of the normalization integral, and the missing configuration then has to be found 
and added to the set. If the probability flows away through a large number of 
"uninterest ing" configurations one may consider renormalization along the 
path Q. 

5. Examples 

For the sake of illustration of the theory we will apply it some examples with 
hydrogen atoms moving along given trajectories. The extended Hfickel method 
[18] will be used with the overlap matrix equal to a unit matrix as is the custom 
in a number of semi-empirical methods. The del~endence on Q of the basis 
functions has been ignored. In principle none of these approximations need to 
be introduced. Work is in progress to use ab initio methods. It is felt, however, 
that the level of accuracy chosen here is sufficient for a qualitatively correct result. 

A typical nuclear velocity may be obtained from the Fe(H20)  3+ complex of Ref. 
[8] with the vibrational frequency for the breathing mode v 0 = 4 5 0 c m  -1 
0.002 a.u. and reduced mass 18 • 1837 a.u. The maximum classical velocity in 
the lowest vibrational level may be obtained from: 

M y  2 Vo 
2 2 (40) 

and will give v = 2.5 • 10 -4 as a bench mark. 
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Fig. 3. Geometry and motion of the hydrogeh nuclei 

In the examples given below H 2 -  H~ is arranged as in Fig. 3. The equilibrium 
distances are 1.4 a.u. for HE and 2.0 a.u. for H +2 [19]. The extended Hiickel 
method,  of course, cannot reproduce these values. We are primarily interested 
in what happens in the avoided crossing region and this region is qualitatively 
correctly reproduced for our purposes. The trajectory is defined by: 

R l = Q + 1 . 2  
(41) 

R2 = - Q  + 2.4. 

The avoided crossing occurs for Q = 0.6 and R1 = RE = 1.8. 

In the first example there is no medium between the two sub-systems. The 
system is prepared  in the ground state at R~ = 1.20 a.u. The electron probabili ty 
density plots are given for a number  of different values of v and R in Figs. 
[4, 5]. For R - - 7  a.u. the transfer is almost completely adiabatic for v = 
1.0 • 10 -4. For R = 9 the transfer probabili ty is already very small for the same 
velocity. Since HIE decreases for increasing R roughly as given in Eq. (17), the 
probabili ty for transfer also decreases rapidly. In the case of v = 10 -5 the number  
of mesh points in the integration was ten times the number  plotted in Fig. 5. 
Away from the crossing the wave length is smaller than the distance between 
the mesh points. This case is therefore an example of the problem discussed at 
the end of section 3. 

The mechanism of electron " + transfer in the H 2 -  H2 system is rather  well simulating 
transfer in a redox system with metal  ions. The nuclear motions in the two 
sub-systems are the cause of the transfer. It is of great importance to study how 
bridging atoms affect the transfer. In the next examples 0 2- and S 2- ions are 
inserted between the H2 systems (Figs. 6, 7). The transfer is now becoming 
almost adiabatic for R = 10 a.u. and v = 2 x 10 -4 for 0 2- and for R = 12 and 
the same velocity for S 2-. The reason for the improved transfer is primarily the 
2p and 3p orbitals of the bridge which decrease the energy of the antisymmetric 
combination. The energy gap thereby increases (see Fig. 8) leading to a larger 
transfer probability. This is the basis for a molecular orbital theory for electron 
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Fig. 8. Molecular orbital diagram for one 
intervening atom between the two H2 
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transfer in the nonadiabatic limit [22]. The orbital energy diagram for the 
transferring orbitals in the case of transition metal ions is given in Fig. 9. 

In the example given above 0 2 -  and S a- are only acting as mediators of electrons. 
It is of interest to study the case when the mediator has electrons at the same 
energy as the exchanging systems. One may therefore put another H2 parallel 
to the other two and the distance R from each. Let us keep the interatomic 
distance of this H2 equal to 1.8 (the value when R1 = Re). At a large velocity 
(5 • 1 0  -4)  H~- simply gets the electron from the bridging H2 (Fig. 10), whereas 
for the smaller velocity the bridging H2 manages to recover one electron from 
the end Ha (Fig. 11). It may be noticed that the distance between the end H2 



1 2 4  S. L a r s s o n  

p H 2 H 2 H 2  + R=7 V = O .  0 0 0 5  
~ . . . . . . .  =,=.=l=.=.=.ClEIEl I . . . . . . . . .  ~ . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

�9 ~ - . . . . . . . . .  . "?'. 
�9 \ . \ 

X, " ~ / k g \ ,,,~ 

i \ \  

: \ . r ' \  i \ 

. ........... :,. ,.," ,.,. i '.,. 

- ... ^ D  Hi 

~o " _._ H3 

.." _ _  H2 

1 .20 1 .40 1 .60 1 .80 2 . 0 0  2 . 2 0  2 . 4 0  

F i g .  1 0 .  E l e c t r o n  p r o b a b i l i t y  p o p u l a t i o n  a t  H 1 ,  H 2  a n d  H 3  (of  i n t e r v e n i n g  H2)  as  a f u n c t i o n  o f  R 1 .  

R = 7 a .u .  b e t w e e n  e a c h  H 2 ;  u = 5 • 10  - 4  a .u .  

p H 2 H 2 He+ R=7 V=0.00005 
o 

~ -4 = .................. ~ ..... ~ ,'~ ii t~:,V<~'m"~',~w,~ �9 ~ "  ....................... .~.~.~.~,.\.~\ ~-x / -  i ̂  I~!v !'ti'~..;vv~',~. 

"., 
?~-t : 

J 
t 

J 

! 
i r - J  

! 
! 
I 
i 

I 
1 ; I 

. J  ~/~ . . .  AD H1 

II _._ H3 

to . . . .  , . . . .  I . . . .  ' . . . .  I . . . .  ' . . . .  I . . . .  ' . . . .  I . . . .  ' . . . .  ] . . . .  ' . . . .  I '  

1 , 2 0  1 . 4 0  " 1 . 6 0  1 , 8 0  2 .  O0 2 . 2 0  2 . 4 0  

F i g .  1 1 .  E l e c t r o n  p r o b a b i l i t y  p o P u l a t i o n  a t  H 1 ,  H 2  a n d  H 3  (of  i n t e r v e n i n g  H 2 )  as  a f u n c t i o n  o f  R i .  

R = 7 a .u .  b e t w e e n  e a c h  H 2 ;  v = 0 .5  • 10  - 4  a .u .  
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is now 14 a.u., i.e. twice as large as in the original example, but with only a 
small increase in non-adiabaticity. This is an example of "hole hopping" rather 
than "electron hopping". It is impossible for an electron to pass from the end 
H2 to the end H~- and "rest" on the intervening H2. There is no molecular orbital 
available on the bridge H2 for an additional electron. But an electron hole can 
be hosted for a finite time on the bridge. This type of electron transfer may be 
of importance in a number of systems, for instance organic semi-conductors. 

6. Conclusion 

By employing time dependent equations given by Nikitin [17] in quantum 
chemical calculations it is possible to gain some insight into electron transfer 
systems. The present work will be extended in two ways. One extension is to 
compare the extended Hiickel method to more advanced methods on small 
systems, another to apply the extended Hiickel method to larger systems of 
interest in chemical and biological systems. 
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